Buscador

sábado, 28 de marzo de 2009

ANTECEDENTES IV

En la Figura 13-4 se muestra un diagrama de cuerpo libre para equilibrio horizontal. La fuerza de corte vertical Vi en la pared
"i" es igual al producto del flujo de corte q por la longitud de la pared yi. El vector Vi se puede descomponer en dos
componentes: una componente diagonal con una inclinación θ igual al ángulo que forman las diagonales del reticulado, y una
componente horizontal igual a:

Ni Vi cot 

La fuerza Ni está centrada a la mitad de la altura de la pared, ya que q es constante a lo largo de todo el lateral del elemento. Los
cordones superior e inferior del cuerpo libre de la Figura 13-4 están sujetos a una fuerza de Ni/2, cada uno. Internamente se
asume que la armadura longitudinal llega a la tensión de fluencia cuando se llega al máximo momento torsor. Sumando las
fuerzas internas y externas en los cordones de todas las paredes del reticulado espacial se obtiene:




donde A f y es la fuerza de fluencia en toda la armadura longitudinal requerida para torsión.

Reordenando los términos de la ecuación anterior,


No hay comentarios: