La definición de βd, incluida en las Ecuaciones (10-11) y (10-12) para EI, varía según que el pórtico sea indesplazable o desplazable. De acuerdo con el artículo 10.0, para los pórticos indesplazables βd es la relación entre la máxima carga axial mayorada de larga duración (sostenida) y la máxima carga axial mayorada asociada a la misma combinación de cargas. Por motivos de consistencia, la misma definición de βd parece adecuada para obtener el valor de EI para tabiques en la Ecuación
(1). Observar que si de acuerdo con lo establecido en el artículo 10.11.4 se determina que el pórtico es desplazable, βd = 0 para el caso de las cargas laterales que no son sostenidas (10.0).
La Figura 21-1 muestra la comparación entre la rigidez flexional (EI) según la Ecuación (10-12) del Código y la rigidez flexional según la Ecuación (1) en términos de EcIg. Se grafica la relación EI/EcIg en función de e/h para diferentes valores de βd, para una cuantía de armadura constante ρ = 0,0015. Observar que la Ecuación (10-12) del Código asume que EI es independiente de e/h y parece sobrestimar la rigidez del tabique para grandes excentricidades. Para los tabiques diseñados de
acuerdo con el Capítulo 10 del Código para los cuales la esbeltez se evalúa de acuerdo con 10.11, para determinar la rigidez del tabique se recomienda utilizar la Ecuación (1) en vez de la Ecuación (10-12) del Código. En el Ejemplo 21.1 se ilustra la aplicación de este método para el caso de un tabique izado.
Si la esbeltez de un tabique supera el límite de aplicación del método aproximado para evaluar la esbeltez indicado en el artículo 10.11 (kℓu/h > 30), para determinar los efectos de la esbeltez se debe utilizar el artículo 10.10.1 (10.11.5). Los paneles de tabique que se usan en la actualidad en algunos sistemas constructivos, especialmente en las construcciones con paneles izados, generalmente están comprendidos dentro de esta categoría de esbeltez elevada. El análisis de la estabilidad debe tomar en cuenta todas las variables que afectan la rigidez del tabique, los efectos de las flechas sobre los momentos y esfuerzos, y los efectos de la duración de las cargas.
No hay comentarios:
Publicar un comentario